Graphs

3.1 Basic Definitions and Applications

Course instructor:

Sikder Huq
Undirected Graphs

Undirected graph. $G = (V, E)$

- $V =$ nodes.
- $E =$ edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: $n = |V|, m = |E|.$

$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

$E = \{1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6\}$

$n = 8$

$m = 11$
Some Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersections</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>circuits</td>
<td>gates</td>
<td>wires</td>
</tr>
</tbody>
</table>
World Wide Web

Web graph.
- Node: web page.
- Edge: hyperlink from one page to another.
9-11 Terrorist Network

Social network graph.
- **Node:** people.
- **Edge:** relationship between two people.

Ecological Food Web

Food web graph.

- Node = species.
- Edge = from prey to predator.

Lecture 5
Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.
Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
- Two representations of each edge.
- Space proportional to $m + n$.
- Checking if (u, v) is an edge takes $O(\text{deg}(u))$ time.
- Identifying all edges takes $\Theta(m + n)$ time.

degree = number of neighbors of u
Paths and Connectivity

Def. A path in an undirected graph $G = (V, E)$ is a sequence P of nodes $v_1, v_2, …, v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is **simple** if all nodes are distinct.

Def. An undirected graph is **connected** if for every pair of nodes u and v, there is a path between u and v.
Cycles

Def. A cycle is a path $v_1, v_2, ..., v_{k-1}, v_k$ in which $v_1 = v_k$, $k > 2$, and the first $k-1$ nodes are all distinct.

cycle $C = 1-2-4-5-3-1$
Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
- G is connected.
- G does not contain a cycle.
- G has $n-1$ edges.
Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.
Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.
GUI Containment Hierarchy

Describe organization of GUI widgets.

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html
3.2 Graph Traversal
Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path between s and t?

s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t?

Applications.
- Facebook.
- Maze traversal.
- Erdos number.
- Kevin Bacon number.
- Fewest number of hops in a communication network.
Breadth First Search

BFS intuition. Explore outward from \(s \) in all possible directions, adding nodes one "layer" at a time. Effect: find “shallow” paths to nodes.

BFS algorithm.

- \(L_0 = \{ s \} \).
- \(L_1 = \) all neighbors of \(L_0 \).
- \(L_2 = \) all nodes that do not belong to \(L_0 \) or \(L_1 \), and that have an edge to a node in \(L_1 \).
- \(L_{i+1} = \) all nodes that do not belong to an earlier layer, and that have an edge to a node in \(L_i \).

Theorem. For each \(i \), \(L_i \) consists of all nodes at distance exactly \(i \) from \(s \). There is a path from \(s \) to \(t \) iff \(t \) appears in some layer.
Implementing BFS

Q: What’s a good way to implement the above algorithm?

A: Use a queue for the “frontier”
Breadth First Search

Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.
Lecture 6
Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency list representation.

Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists L_i
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge

- Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\text{deg}(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} \text{deg}(u) = 2m$.

\[\uparrow \]

each edge (u, v) is counted exactly twice in sum: once in $\text{deg}(u)$ and once in $\text{deg}(v)$
Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}.
Q1: Finding connected components

Give an algorithm to find the set of all connected components of an undirected graph.
Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u,v) where $u \in R$ and $v \not\in R$
 Add v to R
Endwhile

Theorem. Upon termination, R is the connected component containing s.
- BFS = explore in order of distance from s.

Q2: Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.
Flood Fill

Flood fill. *Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.*
Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- **Node**: pixel.
- **Edge**: two neighboring lime pixels.
- **Blob**: connected component of lime pixels.

recolor lime green blob to blue
Depth-first search

Use recursion

DFS intuition. Explore outward from \(s \) along one path as far as possible, and backtrack when you cannot progress. Effect: find faraway nodes.

DFS(\(u \)):
- Mark \(u \) as “Explored” and add \(u \) to \(R \)
- For each edge \((u,v)\) incident to \(u \)
 - If \(v \) is not marked “Explored” then
 - Recursively call DFS(\(v \))
Depth-first search

Property. For a given recursive call DFS(u), all nodes marked “Explored” between the beginning and end of this recursive call are descendants of u in T.

Theorem. Let T be a depth-first search tree, let x and y be nodes in T, and let (x,y) be an edge of G that is not an edge of T. Then one of x or y is an ancestor of the other.
Q3: BFS and DFS trees

We have a connected graph $G = (V, E)$ and a specific vertex u. Suppose we compute a DFS tree rooted at u, and obtain a tree T that includes all nodes of G. Suppose we then compute a BFS tree rooted at u, and obtain the same tree T.

Prove that $G = T$.

Answer

Suppose G has an edge $e = \{a, b\}$ that does not belong to T.

As T is a DFS tree, one of the two ends must be an ancestor of the other—say a is an ancestor of b.

(*) Since T is a BFS tree, the distance of the two nodes from u in T can differ at most by one.

But if a is an ancestor of b, and (*) holds, then a must be the direct parent of b. This means that $\{a, b\}$ is an edge in T. Contradiction.
Q4: Finding a cycle

Given a graph G, determine if it has a cycle. If so, the algorithm should output this cycle.

Answer: Assume that G is connected; otherwise work on the connected components.

Run BFS from an arbitrary node s, and obtain a BFS tree T. If every edge of G appears in the tree, then $G = T$ and there is no cycle.

Otherwise, there is an edge $e = (v, w)$ that is in G but not in T. Consider the least common ancestor u of v and w in T. We get a cycle from edge e and paths $u-v$ and $u-w$ in T.
3.4 Testing Bipartiteness

Lecture 7
Def. An undirected graph $G = (V, E)$ is **bipartite** if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.
- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.
Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

![a bipartite graph G](image1.png)

![another drawing of G](image2.png)
An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.
An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

![Graphs showing bipartite and non-bipartite properties](image)
Bipartite Graphs

Lemma. Let \(G \) be a connected graph, and let \(L_0, \ldots, L_k \) be the layers produced by BFS starting at node \(s \). Exactly one of the following holds.

(i) No edge of \(G \) joins two nodes of the same layer, and \(G \) is bipartite.
(ii) An edge of \(G \) joins two nodes of the same layer, and \(G \) contains an odd-length cycle (and hence is not bipartite).

Case (i)

Case (ii)
Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge joins two nodes in the same layer.
- By previous lemma, this implies all edges join nodes on successive levels.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.
Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = \text{lca}(x, y) =$ lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is $1 + (j-i) + (j-i)$, which is odd.

\[z = \text{lca}(x, y) \]

\[(x, y) \quad \text{path from y to z} \quad \text{path from z to x} \]
Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd length cycle.

![Diagram](image-url)

- **bipartite (2-colorable)**
- **not bipartite (not 2-colorable)**
Q1: Destroying paths

Suppose that an n-node undirected graph $G = (V, E)$ contains two nodes s and t such that the distance between s and t is strictly greater than $n/2$. Show that there must exist some node v, not equal to either s or t, such that deleting v from G destroys all s-t paths.

Give an algorithm with running $O(m+n)$ to find such a node.
Answer

Run BFS starting from s. Let d be the layer where you encounter t. By assumption, $d > n/2$.

Now we claim that one of the layers L_1, \ldots, L_{d-1} has a single node. Why? Because if not, then they account for at least $2(n/2) = n$ nodes. But G has only n nodes, and s and t are not in these layers.

Now let L_i be the layer containing a single node v. Suppose we delete v. Consider the set X of all nodes in layers $0, \ldots, i-1$. This set cannot contain t.

Any edge out of these nodes can only lead to a node in L_i or stay in X, by the properties of BFS. But v is the only node in L_i.
Q2: Interference-free paths

Consider the following robotics question. You have an undirected graph $G = (V,E)$ that represents the floor plan of a building, and there are two robots located at nodes a and b. The robot at node a wants to move to node c; the robot at node b wants to move to node d.

This is done using a schedule: a function that at each time step, specifies that a robot moves across a single edge. A schedule is interference-free if there is no point at which the two robots occupy nodes that are at a distance $\leq r$ from one another. (We assume that $a-b$ and $c-d$ are sufficiently far apart.)

Give an algorithm to tell if there is an interference-free schedule that the robots can use.
Don’t consider the graph G but the “product” H of G with itself.

Nodes of H: pairs (u,v) where u, v are nodes of G.

Edges of H: $((u,v), (u', v'))$ where
1. Either $u = u'$ and there is an edge between v and v' in G
2. $v = v'$ and there is an edge between u and u' in G

Now delete from H all nodes where there would be interference, getting a graph H'.

Check if there is a path from (a,b) to (c,d) in H'.

Complexity: $O(mn + n^2)$
3.5 Connectivity in Directed Graphs

Lecture 8
Directed Graphs

Directed graph. $G = (V, E)$
- Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.
Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two nodes s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.
Strong Connectivity

Def. Node u and v are **mutually reachable** if there is a path from u to v and also a path from v to u.

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.
Strong Connectivity

Def. Node u and v are **mutually reachable** if there is a path from u to v and also a path from v to u.

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.

Pf. ⇐ Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path.

\[\text{ok if paths overlap} \]
Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.
Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.
- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. \[\blacksquare \]
3.6 DAGs and Topological Ordering
Directed Acyclic Graphs

Def. An **DAG** is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A **topological order** of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, \ldots, v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).
Precedence Constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.
- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\). Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order $v_1, ..., v_n$ and that G also has a directed cycle C. Let's see what happens.

![Diagram of a directed acyclic graph with vertices v_1, v_i, v_j, v_n and a cycle C.]
Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. ▪
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.

Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.

Then, since u has at least one incoming edge (x, u), we can walk backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. ·
Lecture 9
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
- Base case: true if $n = 1$.
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
- Base case: true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no incoming edges.
- $G - \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G - \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G - \{v\}$ in topological order. This is valid since v has no incoming edges.

![Diagram of a DAG with a node v and outgoing arrows]
Directed Acyclic Graphs

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G-\{v\}$
and append this order after v
Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.
- Maintain the following information:
 - $\text{count}[w] = \text{remaining number of incoming edges to node } w$
 - $S = \text{set of remaining nodes with no incoming edges}$
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}[w]$ for all edges from v to w, and add w to S if $\text{count}[w]$ hits 0
 - this is $O(1)$ per edge

\[\]
Question

Can you have multiple topological orderings for a graph?
Q1: Reachability game

Suppose you have a bipartite directed graph with nodes in the two partitions colored red and blue, and two players: Red and Blue. Red and Blue play a game where a token gets moved along edges of the graph. At each point, the player whose name matches the color of the current node pushes the token. Initially the token is at s (a red node).

The objective of the game is that Red wants the token to avoid a certain set of blue nodes X. Blue wants the token to get to X at some point in the game; Red wants to avoid this. If the token gets to X at any point, the game is over and Blue wins. Aside from this there is no time bound on the game.

Can you give an algorithm that, given the graph, s, and X, can tell if Red has a strategy to win this game?
Solution

Iteratively grow a set S from which Blue can “force” Red to reach X

```
S := X
while (S ≠ S') {
    S' := S
    Add to $S$ every red node $u$ such that ALL neighbors of $u$ are in $S$
    Add to $S$ every blue node $v$ such that SOME neighbor of $v$ is in $S$
}
Check if the initial node lies in $S$
```

The set we compute is called the “attractor” of S.

We still need a proof!